欢迎访问豆汁网文库范文大全网!客服QQ:357588611

高中数学三角函数教案

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

高中数学三角函数教案优秀6篇

教案能够帮助教师提前预测学生可能遇到的问题,并做好解决方案。下面是小编为大家整理的高中数学三角函数教案,如果大家喜欢可以分享给身边的朋友。

高中数学三角函数教案

高中数学三角函数教案 【篇1】

一、教学内容

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

二、教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

三、过程与方法

通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.

四、教学重点和难点

重点:进行含有30°、45°、60°角的三角函数值的计算

难点:记住30°、45°、60°角的三角函数值

五、教学准备

教师准备

预先准备教材、教参以及多媒体课件

学生准备

教材、同步练习册、作业本、草稿纸、作图工具等

六、教学步骤

教学流程设计

教师指导学生活动

1.新章节开场白. 1.进入学习状态.

2.进行教学. 2.配合学习.

3.总结和指导学生练习. 3记录相关内容,完成练习.

教学过程设计

1、从学生原有的认知结构提出问题

2、师生共同研究形成概念

3、随堂练习

4、小结

5、作业

板书设计

1、叙述三角函数的意义

2、30°、45°、60°角的三角函数值

3、例题

七、课后反思

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

高中数学三角函数教案 【篇2】

各位同仁,各位专家:

我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册 第1。2节

先对教材进行分析

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

教学重点:任意角三角函数的定义

教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;

学情分析:

学生已经掌握的内容,学生学习能力

1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下

知识目标:

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

能力目标:

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法

教法学法:温故知新,逐步拓展

(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

运用多媒体工具

(1)提高直观性增强趣味性。

教学过程分析

总体来说, 由旧及新,由易及难,

逐步加强,逐步推进

先由初中的直角三角形中锐角三角函数的定义

过度到直角坐标系中锐角三角函数的定义

再发展到直角坐标系中任意角三角函数的定义

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排

引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答

SinA=对边/斜边=BC/AB

cosA=对边/斜边=AC/AB

tanA=对边/斜边=BC/AC

逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。

我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?

引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了

从而得到

知识点一:任意一个角的三角函数的定义

提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义

例1已知角A 的终边经过P(2,—3),求角A的三个三角函数值

(此题由学生自己分析独立动手完成)

例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值

结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域

由学生分析讨论,得出结论

知识点二:三个三角函数的定义域

同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数

例题变式2, 已知角A 的终边经过P(—2a,—3a)( a不为0),求角A的三个三角函数值

解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点

知识点三:三角函数值的正负与角所在象限的关系

由学生推出结论,教师总结符号记忆方法,便于学生记忆

例题2:已知A在第二象限且 sinA=0。2 求cosA,tanA

求cosA,tanA

综合练习巩固提高,更为下节的同角关系式打下基础

拓展,如果不限制A的象限呢,可以留作课外探讨

小结回顾课堂内容

课堂作业和课外作业以加强知识的记忆和理解

课堂作业P16 1,2,4

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)

课后分层作业(有利于全体学生的发展)

必作P23 1(2),5(2),6(2)(4) 选作P23 3,4

板书设计(见PPT)

高中数学三角函数教案 【篇3】

今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。

一、教材的地位和作用

本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、学情分析

从学生的年龄特征和认知特征来看:

九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

从学生已具备的知识和技能来看:

九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础

从心理特征来看:初三学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

从学生有待于提高的知识和技能来看:

学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。

3、教学重、难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解正弦函数意义,并会求锐角的正弦值。

难点确定为:根据锐角的正弦值及一边,求直角三角形的其他边长。

二、教学目标分析

新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,我将四个目标进行整合,确定本节课的教学目标为:

1.理解锐角正弦的意义,并会求锐角的正弦值;

2.初步了解锐角正弦取值范围及增减性;

3.掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其他边长的方法;

4.经历锐角正弦的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力;

5.通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

三、教学方法和学法分析

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

本节课的教法采用的是情境引导和探究发现教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。

本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(一)自主探究

1、复习旧知,温故知新

1、已知:在Rt△ABC中,∠C=900,∠A=350,则∠B= 0

2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,则BC=

设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。

2、创设情境,提出问题

利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

(二)自主合作

1、发现问题,探求新知(要求学生独立思考后小组内合作探究)

1、(播放绿化荒山的视频)课本P74问题与思考,求的值

2、课本P75思考:求的值

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。

2、分析思考,加深理解

1、课本P75探索,

问:与有什么关系?你能解释吗?

2、正弦函数定义:在Rt△ABC中,∠C=900,,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=

对定义的几点说明:

1、sinA是一个完整的符号,表示∠A的正切习惯上省略“∠”的符号.

2、本章我们只研究锐角∠A的正弦.

3、sinA的范围:0

设计意图:数学教学论指出,数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对锐角正弦定义阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。

(三)自主展示(强化训练,巩固双基)

1、(例1课本P76)已知:在Rt△ABC中,∠C=900,根据图中数据

求sinA和sinB

2、判断对错(学生口答)

(1)若锐角∠A=∠B,则sinA=sinB ( )

(2)sin600=sin300+sin300 ( )

3、如图,将Rt△ABC各边扩大100倍,则tanA的值( )

A.扩大100倍B.缩小100倍C.不变D.不确定

4、如图,平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(四)自主拓展(提高升华)

1、课本习题28.1第1、2、题;

2、选做题:已知:在Rt△ABC中,∠C=900,sinA=,周长为60,求:斜边AB的长?

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

(五)自主评价(小结归纳,拓展深化)

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:

①通过本节课的学习,你学会了哪些知识;

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法?

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:

1、sinA能为负吗?

2、比较sin450和sin300的大小?

设计要求:(1)先学生独立思考后小组内探究

(2)各组交流展示探究结果,并且组内或各组之间自主评价.

设计意图:

(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.

(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。我的说课到此结束,敬请各位老师批评、指正,谢谢!

教学反思

1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。

2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。

3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。

高中数学三角函数教案 【篇4】

在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。

一、说教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。

2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。

3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。

二、说教学重点

教学重点:探索特殊锐角三角函数值的过程,进行这些三角函数值的计算并会比较不同锐角三角函数值大小

在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。

三、说教学设计:

1、让学生自主研习,独立探究。

(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?

(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?

2、让学生合作学习、生生互动

(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)

(2)观察表格中函数值的特点。先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?第二列、第三列呢?

(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。

3、精讲细评,师生合作(先由学生独立完成)

(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)钟表上的钟摆长度为25 Cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1 Cm)

分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力

4、延伸迁移,形成技能

(1)计算:sin60°—tan45°;cos60°+tan60°;

(2)某商场有一自动扶梯,其倾斜角为30°。高为7 m,扶梯的长度是多少?

自主小结:

讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会

在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。

高中数学三角函数教案 【篇5】

一、教学背景

《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。

高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。

根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:

1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。

3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。

根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。

二、活动评价

在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。

三、课程设计

在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。

1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。

2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。

接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。

3、归纳总结

经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的重点,又自然而然地突破了本课的难点。

4、实践应用

为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。

在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。

5、课程总结

本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。

在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。

四、教学体会

本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。

高中数学三角函数教案 【篇6】

1、教学目标:

一、借助单位圆理解任意角的三角函数的定义。

二、根据三角函数的定义,能够判断三角函数值的符号。

三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

2、教学重点与难点:

重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

难点:任意角的三角函数概念的建构过程。

授课过程:

一、引入

在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

二、创设情境

三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

问题:

1、锐角三角函数能否表示成第二种比值方式?

2、点P能否取在终边上的其它位置?为什么?

3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

练习:计算的各三角函数值。

三、任意角的三角函数的定义

角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

评价学生给出的定义。给出任意角三角函数的定义。

四、解析任意角三角函数的定义

三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

五、三角函数的应用。

1、已知角,求a的三角函数值。

2、已知角a终边上的一点P(-3,-4),求各三角函数值。

以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

1、已知角如何求三角函数值?

2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

4、探究:三角函数的值在各象限的符号。

六、小结及作业

教案设计说明:

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

143423
领取福利

微信扫码领取福利

微信扫码分享