欢迎访问豆汁网文库范文大全网!客服QQ:357588611

七年级上册数学教案人教版

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

七年级上册数学教案人教版6篇

教案是教师教学活动中不可或缺的重要工具。教案能够帮助教师合理安排教学内容和教学步骤。下面是小编为大家整理的七年级上册数学教案人教版,如果大家喜欢可以分享给身边的朋友。

七年级上册数学教案人教版

七年级上册数学教案人教版 篇1

一、内容特点

在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。

具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

七年级上册数学教案人教版 篇2

学习目标:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

重点难点:

正数和负数概念

教学过程:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子。

(2)负数的产生同样是生活和生产的需要。

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、-8、-47。

(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示。

(3)阅读P2的内容。

3、正数、负数的.概念

1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

课堂练习:

1.P3第1,2题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:13,2,3.14,+3065,0,-239;54,则正数有______________;负数有____________________。

4.下列结论中正确的是()

A.0既是正数,又是负数

B.0是最大的负数

要点归纳:

正数、负数的概念:

(1)大于0的数叫做,小于0的数叫做。

(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

拓展训练:

1.零下15℃,表示为_________,比0℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地。

3.“甲比乙大-3岁”表示的意义是_________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。课后作业:P5第1、2题。

七年级上册数学教案人教版 篇3

知识目标

使学会解比例的方法,进一步理解和掌握比例的基本性质。

能力目标

联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

情感目标

利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

重点

使学会解比例的方法,进一步理解和掌握比例的基本性质。

难点

体现解比例在生产生活中的广泛应用。

教学过程

教学预设个性修改

目标导学,复习激趣,自主合作,汇报交流,变式训练

创境激疑一、旧知铺垫

1、什么叫做比例?

2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

3、比例有几种表示形式?

合作探究二、探索新知

1、出示埃菲尔铁挂图

2、出示例题

(1)、读题。

(2)、从这道题里,你们获得了哪些信息?

(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)

(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

(14)、这样含有未知数的等式,叫做方程。那么求出方程中的`未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

2、教学例3

过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

(1)、出示例3,问:这题与刚刚那个比例有哪些不同?

(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

(3)、在这个比例里,哪些是外项?哪些是内项?

(4)、解答(提问:你们是怎么解答的?)、检验。

拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

总结这节课主要学习了什么内容?

作业布置教材43页5题。

七年级上册数学教案人教版 篇4

教学目标:

知识与能力:能正确运用角度表示方向,并能熟练运算和角有关的问题。

过程与方法:能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

情感、态度、价值观:

能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

教学重点:

方位角的表示方法。

教学难点:

方位角的准确表示。

教学准备:

预习书上有关内容

预习导学:

如图所示,请说出四条射线所表示的方位角?

教学过程:

一、创设情景,谈话导入

在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

二、精讲点拔,质疑问难

方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

三、课堂活动,强化训练

例1如图:指出图中射线OA、OB所表示的方向。(学生个别回答,学生点评)

例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?(小组讨论,个别回答,教师)

例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。(教师分析,一学生上黑板,学生点评)

四、延伸拓展,巩固内化

例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的`北偏东60°,距哨所8km的地方。

(1)请按比例尺1:000画出图形。(独立完成,一同学上黑板,学生点评)

(2)通过测量计算,确定船航行的方向和进度。(小组讨论,得出结论,代表发言)

五、布置作业、当堂反馈

练习:请使用量角器、刻度尺画出下列点的位置。

(1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

(2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

(3)点C在点O的西北方向上,同时在点B的正北方向上。

七年级上册数学教案人教版 篇5

教学目标

知识与能力目标:

1、巩固理解有理数的概念;

2、掌握数轴的意义及构成特点,明确其在实际中的应用;

3、会用数轴上的点表示有理数。

情感态度价值观目标:通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点

教学重点:数轴的意义及作用。

教学难点:数轴上的点与有理数的直观对应关系。

课前准备

《数学》人教版七年级上册,自制课件。

教学过程

一、探索新知(投影展示)

问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:

1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

2、举例说明生活中类似的事例;

3、什么叫数轴?它有哪几个要素组成?

4、数轴的.用处是什么?

5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

(1)数轴的构成三要素:原点、方向、单位长度;

(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

5、归纳

(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

二、例题分析

例1.先画出数轴,然后在数轴上表示下列各数:-1、5,0,-2,2,-10/3。

例2、数轴上与原点距离4个长度单位的点表示的数是。

三、巩固训练

课本p10练习

自我检测

(1)数轴的三要素是;

(2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

(3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

(4)如图,a、b为有理数,则a0,b0,ab

课堂小结

(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

(2)数轴的三要素:原点、正方向、单位长度。

(3)数学思想:数形结合的思想。

五、作业

1、课本14页习题1、2。

2、完成“自我检测”。

3、个性补充。

⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

⑵画一条数轴,并表示出如下各点:1000,5000,-20__。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出-5和+5之间的所有整数。

七年级上册数学教案人教版 篇6

教学目标:

1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。

2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。

3、养成学生积极主动的学习态度和自主学习的方式。

重点难点:

重点:认识点、线、面、体的几何特征,感受它们之间的关系。

难点:在实际背景中体会点的含义。

教学准备:

圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型

教学过程:

一、创设情境

多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体。

设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活,如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义。

二、讨论(动态研究)

课件演示:灿烂的'星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?

观察、讨论,让学生共同体会“点动成线、线动成面、面动成体,让学生举出更多的“点动成线、线动成面、面动成体”的例子。

小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)

设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。学生自己动手实践操作,加深学生印象,化解难度。

三、讨论(静态研究)

教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。

让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。

四、探索

1、课本112页观察,并回答它的问题。

引导学生观察后得出结论:面与面相交得到线,线与线相交得到点。

2、113页练习(提供实物,议一议,动手摸一摸),思考以下问题:

这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?

让学生自己体会并小组讨论得出点、线、面、体之间的关系。

五、作业

1、“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理。”说说你对上述这段叙述的理解和体会。

2、阅读教科书第119页的实验与探究,并思考有关问题。

143425
领取福利

微信扫码领取福利

微信扫码分享