欢迎访问豆汁范文网!本站整体转让,客服QQ:168657525

最新北师大版八年级下册数学教案

网友投稿 分享 时间: 加入收藏 我要投稿 点赞
0

最新北师大版八年级下册数学教案5篇

培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”这里给大家分享一些关于最新北师大版八年级下册数学教案,供大家参考学习。

最新北师大版八年级下册数学教案

最新北师大版八年级下册数学教案(篇1)

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

最新北师大版八年级下册数学教案(篇2)

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);

(2)幂的乘方:(am)n = amn (m,n是正整数);

(3)积的乘方:(ab)n = anbn (n是正整数);

(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n = (n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

最新北师大版八年级下册数学教案(篇3)

一、学习目标:

1、使学生了解运用公式法分解因式的意义;

2、使学生掌握用平方差公式分解因式

二、重点难点

重点: 掌握运用平方差公式分解因式、

难点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式、

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法、

1、请看乘法公式

(a+b)(a-b)=a2-b2

(1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b)

(2)左边是一个多项式,右边是整式的乘积、大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式、

a2-b2=(a+b)(a-b)

2、公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4)、

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2、

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x、

补充例题:判断下列分解因式是否正确、

(1)(a+b)2-c2=a2+2ab+b2-c2、

(2)a4-1=(a2)2-1=(a2+1)?(a2-1)、

五、课堂练习

教科书练习

六、作业

1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

最新北师大版八年级下册数学教案(篇4)

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

最新北师大版八年级下册数学教案(篇5)

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

1.以AB为一边的三角形有哪些?

2.以∠D为一个内角的三角形有哪些?

3.以E为一个顶点的三角形有哪些?

4.说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延伸,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

61695
领取福利

微信扫码领取福利

微信扫码分享

包月会员
每天0次下载
20元/30天
直接下载
单次下载
1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭