欢迎访问豆汁范文网!本站整体转让,客服QQ:168657525

北师版八年级数学上册第三章教案

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

北师版八年级数学上册第三章教案【5篇】

在青春的世界里,沙粒要变成珍珠,石头要化作金;青春的魅力,应当叫枯枝长出鲜果,沙漠布满森林;这才是青春的快乐,青春的本份!这里给大家分享一些关于北师版八年级数学上册第三章教案,供大家参考学习。

北师版八年级数学上册第三章教案

北师版八年级数学上册第三章教案【篇1】

一、回顾交流,合作学习

【活动方略】

活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

【问题探究1】(投影显示)

飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

【活动方略】

教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

【问题探究2】(投影显示)

一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

【活动方略】

教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

学生活动:思考后,完成“问题探究2”,小结方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD为直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此这个零件符合要求.

【问题探究3】

甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

【活动方略】

教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

学生活动:课堂练习,与同伴交流或举手争取上台演示

北师版八年级数学上册第三章教案【篇2】

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:对于平均数、中位数、众数在不同情境中的应用。

教学方法:归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数X1,……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

例1,某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:

每人销售件数1800 510 250 210 150 120

人数113532

(1)求这15位营销人员该月销售量的平均数、中位数和众数;

(2)假设销售部负责人把每位营销员的月销售额定为平均数,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由。

例2,某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:复习题B组、C组(选做)

北师版八年级数学上册第三章教案【篇3】

一、教材分析教材的地位和作用:

本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的.三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

二、学情分析

八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

三、教学目标及重点、难点的确定

根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

(一)教学目标:

1、知识技能

(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

(2)理解并掌握轴对称的概念,对称轴;了解对称点.

(3)了解轴对称图形和轴对称的联系与区别.

2、过程与方法目标

经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

3、情感、态度与价值观

通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

(二)教学重点:轴对称图形和轴对称的有关概念.

(三)教学难点:轴对称图形与轴对称的联系、区别

.四、教法和学法设计

本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

五、说程序设计:

新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

(一)、观图激趣、设疑导入。

出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

[设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

(二)、实践探索、感悟特征.

《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

为了进一步认识轴对称图形的特点又出示了一组练习

(练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

[设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

(练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

(三)、动手操作、再度探索新知。

将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

(四)、巩固练习、升华新知。

出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

(课件演示)轴对称图形及两个图形成轴对称区别与联系

(五)、综合练习、发展思维。

1、抢答;观察周围哪些事物的形状是轴对称图形。

2、判断:

生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

(1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

0123456789ABCDEFGH

3、像这样写法的汉字哪些是轴对称图形?

口工用中由日直水清甲

(这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

(六)归纳小结、布置作业

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

六、设计说明

这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

北师版八年级数学上册第三章教案【篇4】

课题:一元二次方程实数根错例剖析课

【教学目的】精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当 a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1 下列方程中两实数根之和为2的方程是()

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

错答: B

正解: C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2 若关于x的方程x2+2(k+2)x+k2=0 两个实数根之和大于-4,则k的取值范围是( )

(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

错解 :B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20__广西中考题) 已知关于x的一元二次方程(1-2k)x2-2 x-1=0有两个不相等的实根,求k的取值范围。

错解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范围是 -1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k= 时,原方程变为一次方程,不可能有两个实根。

正解: -1≤k<2且k≠

例4 (20__山东太原中考题) 已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m = -4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1= -19<0,方程无实数根,不符合题意。

正解:m = 2

例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ -5/4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范围是m≠±1且m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x= -3± ,舍去;令a=2,则x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 , x3=0, x4= -3

【练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4 k2>0 解得k<

∴当k< 时,方程有两个不相等的实数根。

(2)存在。

如果方程的两实数根x1、x2互为相反数,则x1+ x2=- =0,得k= 。经检验k= 是方程- 的解。

∴当k= 时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k< 时且k≠0时,方程有两个不相等的实数根。

(2)k= 。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根 ?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4

∴当a≥ -4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

综上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x + m=0一定有一个或两个实数根。

考题汇编

1、(20__年广东省中考题)设x1、 x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20__年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20__年广东省中考题)已知关于x的方程x2+2(m-2)x+ m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20__年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

北师版八年级数学上册第三章教案【篇5】

一、学情分析

本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十七章分式

本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十八章函数及其图像

函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十九章全等三角形

本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。

第二十章平行四边形的判定

本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。

第二十一章数据的整理与初步处理

本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、培养学生学习数学的良好习惯。这些习惯包括:

①认真做作业的习?包括作业前清理好桌面,作业后认真检查;

②预习的习惯;

③认真看批改后的作业并及时更正的习惯;

④认真做好课前准备的习惯;

⑤在书上作精要笔记的习惯;

⑥妥善保管书籍资料和学习用品的习惯;

⑦认真阅读数学教材的习惯。

61726
领取福利

微信扫码领取福利

微信扫码分享