欢迎访问豆汁范文网!本站整体转让,客服QQ:168657525

人教版八年级数学下册全册教案

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

最新人教版八年级数学下册全册教案范文5篇

世界上有一种情,超越了亲情友情。那就是老师对我们无微不至的关怀之情,对我们细心教导之情。我真心祝福老师万事如意永远健康,永远HAPPY!这里给大家分享一些关于人教版八年级数学下册全册教案,供大家参考学习。

人教版八年级数学下册全册教案

人教版八年级数学下册全册教案(精选篇1)

《梯形》教案

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的.分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

人教版八年级数学下册全册教案(精选篇2)

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式: (略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1) 讲解例1。学生分析完成,教师注重完成后的点评。

例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1= 只要证什么?

(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

(2)讲解例2(投影例2 )

例2已知:如图AB=DC,AD=BC

求证:∠A=∠C

(1)学生思考、分析、讨论,教师巡视,适当参与讨论。

(2)找学生代表口述证明思路。

思路1:连接BD(如图)

证△ABD≌△CDB(SSS)先得∠A=∠C

思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如图,已知AB=AC,DB=DC

(1)若E、F、G、H分别是各边的中点,求证:EH=FG

(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上写出证明,然后选择投影显示。

证明:(略)

说明:证直线垂直可证两直线夹角等于 ,而由两邻补角相等证两直线的夹角等于 ,又是很重要的一种方法。

例4 如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

求证:AC=2AE.

证明:(略)

学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

5、课堂小结:

(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业:

a、书面作业P70#11、12

b、上交作业P70#14 P71B组3

人教版八年级数学下册全册教案(精选篇3)

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

2、会求一组数据的极差。

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差。

2、难点:本节课内容较容易接受,不存在难点。

三、课堂引入:

下表显示的是上海20_年2月下旬和20_年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法。

经计算可以看出,对于2月下旬的这段时间而言,20_年和20_年上海地区的平均气温相等,都是12度。

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图。

观察一下,它们有区别吗?说说你观察得到的结果。

用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围、用这种方法得到的差称为极差(range)。

四、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

人教版八年级数学下册全册教案(精选篇4)

一、学习目标及重、难点:

1、了解方差的定义和计算公式。

2、理解方差概念的产生和形成的过程。

3、会用方差计算公式来比较两组数据的波动大小。

重点:方差产生的必要性和应用方差公式解决实际问题。

难点:理解方差公式

二、自主学习:

(一)知识我先懂:

方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用

来表示。

给力小贴士:方差越小说明这组数据越 。波动性越 。

(二)自主检测小练习:

1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

2、甲、乙两组数据如下:

甲组:10 9 11 8 12 13 10 7;

乙组:7 8 9 10 11 12 11 12、

分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

三、新课讲解:

引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、 10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )

(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

我们用它们的平均数,表示这组数据的方差:即用 来表示。

(一)例题讲解:

例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

测试次数第1次 第2次 第3次 第4次 第5次

段巍 13 14 13 12 13

金志强 10 13 16 14 12

给力提示:先求平均数,在利用公式求解方差。

(二)小试身手

1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定

去参加比赛。

1、求下列数据的众数:

(1)3, 2, 5, 3, 1, 2, 3

(2)5, 2, 1, 5, 3, 5, 2, 2

2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

四、课堂小结

方差公式:

给力提示:方差越小说明这组数据越 。波动性越 。

每课一首诗:求方差,有公式;先平均,再求差;

求平方,再平均;所得数,是方差。

五、课堂检测:

1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽 10.8 10.9 11、0 10.7 11、1 11、1 10.8 11、0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11、0 10.9 10.8 11、1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

六、课后作业:

必做题:教材141页 练习1、2 选做题:练习册对应部分习题

七、学习小札记:

写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

人教版八年级数学下册全册教案(精选篇5)

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1、知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2、过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3、情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1、重点:会确定全等三角形的对应元素.

2、难点:掌握找对应边、对应角的方法.

3、关键:找对应边、对应角有下面两种方法:

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。

教具准备:

四张大小一样的纸片、直尺、剪刀。

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1、先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2、重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1、任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2、这时它们的三个顶点、三条边和三个内角分别重合了.

3、完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

61825
领取福利

微信扫码领取福利

微信扫码分享