欢迎访问豆汁网文库范文大全网!客服QQ:357588611

初中数学教案反思模板

网友投稿 分享 时间: 加入收藏 我要投稿 点赞
5

初中数学教案反思模板(15篇素材参考)

教案可以帮助教师更好地预测和解决问题,从而更好地应对突发情况。如何撰写优秀的初中数学教案反思模板?这里分享一些初中数学教案反思模板写作案例,供大家参考。

初中数学教案反思模板篇1

课题:数轴

编写:审阅:

班级学号姓名使用日期_________

【学习目标】

1.利用数轴比较两个数的大小;用数轴帮助深化对数的认识;

2.探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想;

3.感受点在数轴上左右运动时,所表示数的大小变化.

【导学提纲】

1.观察数轴,比较右边的点表示的数与左边的点表示的数的大小关系;

并比较-3与-1,与1的大小关系.

2.观察数轴,比较正数、负数、0的大小关系.

【展示交流】

活动一:

1.在数轴上画出表示-5,3,-1,0,4的点.你能将这些数从大到小排列吗?说说你这样排列的理由.

2.2°C与-2°C哪个温度高?-1°C与0°C哪个温度高?-3°C与-4°C哪个温度高?在数轴上画出表示数2、-2;-1、0和-3,-4的点,它们的位置关系如何?

3.把-3°C、-2°C、0°C、5°C按温度从低到高的顺序排列;在数轴上画出表示-3、-2、0、5的点,你能比较这几个数的大小吗?

活动二:

1.比较下列各组数的大小

(1)5和0(2)-0.5和0(3)-3、0、1.5(4)-3.5和-0.5

2.在数轴上画出下列各数的点,并用“<”将它们连接起来.

4,-2.5,0,-4.5,

【盘点收获】

【课堂反馈】

1.课本P18-19练一练1、2、3

2.在数轴上,到原点距离不大于2的所有整数是;

3.如图,在数轴上有三个点A、B、C,请回答:

(1)将点B向左移动3个单位后,三个点所表示的数谁最小?

(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?

(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?

(4)移动A、B、C中的两个点,使三个点表示的数相同,有几种移法?

【迁移创新】

利用数轴回答:

(1)写出所有不大于4且大于-3的整数:;

(2)不小于-4的非正整数是;

(3)比-2大的数是;-3比-6大.

【课堂作业】

课本P19习题3、4

初中数学教案反思模板篇2

教学目标:

教学目标:

1、会画已知点关于已知直线的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。

2、经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

三、教学重点与难点

教学重点:作已知图形的轴对称图形的一般步骤。

教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。

学习过程:

一.学前准备

1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。

2、思考:

下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。

3、请你在下图的方格内,设计一个轴对称图形。

二.自学、合作探究

(一)自学、相信自己(书本)

实践、操作:

1、思考:如图1-9,3点都在方格纸的格点位置上。请你再找一个格点,使图中的4点组成一个轴对称图形。

2、如果直线外有一点,那么怎样画出点关于直线的.对称点?

问题一:画点关于直线的对称点的方法,并说明道理。

问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。

(二)思索、交流(书本例题练习难)

3、分别画出图1-10(1)、(2)、(3)中线段关于直线对称的线段。

4、分别在图图1-10(1)、(2)、(3)的直线上取一点,并画关于直线对称的.

(三)应用、探究(难度大综合纵横思考)

例题讲解

例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?

例题1

例题2

三.学习体会(空)

四.自我测试(书本练习)

1.练习1下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。

1、如图1,线段AB与A’B’关于直线l对称,

⑴连接AA’交直线l于点O,再连接OB、OB’。

⑵把纸沿直线l对折,重合的线段有:。

⑶因为△OAB和△OA’B’关于直线l,所以△OAB-△OA’B’,直线l垂直平分线段,∠ABO=∠,∠AO’B=∠。

图1图2图3

2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,

⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;

⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;

⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;

⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?

3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?

初中数学教案反思模板篇3

教学目标:

1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。

2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。

教学重点、难点:

正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。

教学过程:

一、平面内两直线位置关系

1、操作:

请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?

2、分类:根据学生想象,出示下图(网格):

师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。

3、讨论交流,揭示平面内两条直线的位置关系。

小结:

两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?

板书:

相交

两条直线的位置关系

不相交

二、探究一:垂直

1、平面内两直线相交构成的4个角的特点。

师:首先来研究平面内两条直线“相交”这一情况。

师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?

2、平面内两直线相交的特殊情况。

提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?

(旋转至垂直)

师:现在两条直线相交成直角了。继续旋转呢?

除了相交成直角以外,其余的情况,都是任意相交的。

板书:任意相交

相交

平面内两条直线的位置关系相交成直角

不相交

3、练习:

下列图形中哪两条直线相交成直角。

○1○2○3

4、揭示概念。(媒体出示)

板书:任意相交

相交

平面内两条直线的位置关系相交成直角垂直

不相交

5、平面图形中的垂直现象。

下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。

○1○2○3

记作:记作:记作:

6、动手操作。

三、探究二:平行

1、提问:长方形中,如果把相对的两条边无限延长,是否会在某一点相交?

2、揭示概念

板书:任意相交

相交

平面内两条直线的位置关系相交成直角垂直

不相交平行

3、平面图中的平行现象

4、练习

(1)说说下列哪些直线互相垂直?哪些互相平行?

将图2改为:

提问:e和f还平行吗?

将图2改为:

当角1等于角2时,e和f还平行吗?

(2)渗透“同一”平面观念

长方体中,这两条棱相交吗?那么他们平行吗?

板书:任意相交

相交

同一平面内两条直线的位置关系相交成直角垂直

不相交平行

四、生活中的平行与垂直

1、举例:生活中,你有没有发现“垂直与平行”的现象?

2、提问:为什么这些地方要设计成“垂直”或者“平行”?

五、课堂总结

初中数学教案反思模板篇4

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2.4绝对值(1)

【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2.4绝对值(1)

【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,

初中数学教案反思模板篇5

教学目标 1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点 深化对正负数概念的理解

知识重点 正确理解和表示向指定方向变化的量

教学过程(师生活动) 设计理念

知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即

可,不必深究.

分析问题

解决问题 问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种

意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在

不必向学生提出.

巩固练习 教科书第6页练习

阅读思考

教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结 以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

初中数学教案反思模板篇6

课题:

对数函数

(1)——定义、图象、性质目标:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质

难点:对数函数与指数函数间的关系

过程:

一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数。根据对数的定义,这个函数可以写成对数的形式就是如果用表示自变量,表示函数,这个函数就是由反函数概念可知,与指数函数互为反函数这一节,我们来研究指数函数的反函数对数函数

二、新课

1.对数函数的定义:函数叫做对数函数;它是指数函数的反函数。对数函数的定义域为,值域为。

2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87表图象性质定义域:(0,+∞)值域:R过点(1,0),即当时,时时时时在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1);(2);(3)分析:此题主要利用对数函数的定义域(0,+∞)求解。解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是(3)由9-得-3,∴函数的定义域是注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数①②解:①∴②∴

三、小结:对数函数定义、图象、性质四、作业:课本第95页练习1,2习题2.81,2

初中数学教案反思模板篇7

一、教材分析

1、教材的地位与作用:

有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

2、教学目标:

根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:

⑴、知识与技能:

让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

⑵、过程与方法:

在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

⑶、情感、态度和价值观:

让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

3、教学重点与难点:

有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

二、教法学法

1、学情分析:

在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

2、教学策略:

根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

三、教学过程

1、设置游戏,引入新课:

首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式:____;

游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;

最后引导学生思考这两个算式的特点,引入新课。

这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

2、合作交流,探索新知:

先让学生分组讨论下面算式特点:①____,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)

接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a,a·a·a=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。

n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

3、迁移训练,总结规律:

在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的&39;正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

4、应用新知,尝试练习:

本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚与-2,﹙﹚与的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

5、归纳小结,形成体系:

首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

初中数学教案反思模板篇8

课程名称:初中数学新颖教学方法教案

授课人:__X

课程时长:1小时

课程目标:通过本课程,学生能够掌握初中数学新颖教学方法,包括逻辑思维、问题解决、创造力等。

授课内容:

主题1:逻辑思维

内容:

1.逻辑思维的概念和重要性

2.逻辑思维的方法和技巧

教学方法:

1.讲解:教师介绍逻辑思维的概念、方法和技巧。

2.互动:教师引导学生进行逻辑思维训练,例如解数学题、讨论案例等。

教学资源:

1.PPT:教师制作的逻辑思维教学PPT。

2.练习题:教师准备的逻辑思维练习题。

3.案例:教师选择的逻辑思维案例。

评估方法:

1.学生完成练习题的正确率。

2.学生参与互动的积极性和表现。

3.教师对学生的观察和评价。

主题2:问题解决

内容:

1.问题解决的概念和重要性

2.问题解决的方法和技巧

教学方法:

1.讲解:教师介绍问题解决的概念、方法和技巧。

2.互动:教师引导学生进行问题解决训练,例如解决实际问题、讨论案例等。

教学资源:

1.PPT:教师制作的问题解决教学PPT。

2.练习题:教师准备的问题解决练习题。

3.案例:教师选择的问题解决案例。

评估方法:

1.学生完成练习题的正确率。

2.学生参与互动的积极性和表现。

3.教师对学生的观察和评价。

初中数学教案反思模板篇9

学习目标

1、了解分式的概念,会判断一个代数式是否是分式。

2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。

3、能分析出一个简单分式有、无意义的条件。

4、会根据已知条件求分式的值。

学习重点

分式的概念,掌握分式有意义的条件

学习难点

分式有、无意义的条件

教学流程

预习导航

一、创设情境:

京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:

(1)货运列车从北京到上海需要多长时间?

(2)快速列车从北京到上海需要多长时间?

(3)已知从北京到上海快速列车比货运列车少用多少时间?

观察刚才你们所列的式子,它们有什么特点?

这些式子与分数有什么相同和不同之处?

合作探究

一、概念探究:

1、列出下列式子:

(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是

(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。

(3)正n边形的每个内角为度。

(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。这两块棉田平均每公顷产棉花______㎏。

2、两个数相除可以把它们的商表示成分数的形式。如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?

3、思考:

上面所列各式有什么共同特点?

(通过对以上几个实际问题的研讨,学会用的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)

分式的概念:

4、小结分式的概念中应注意的问题.

①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;

②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;

③如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。分式分母不为零是隐含在此分式中而无须注明的条件。

二、例题分析:

例1:试解释分式所表示的实际意义

例2:求分式的值①a=3②a=—

例3:当取什么值时,分式(1)没有意义?(2)有意义?(3)值为零。

三、展示交流:

1、在____________中,是整式的有_____________________,是分式的有________________;

2、写成分式为____________,且当m≠_____时分式有意义;

3、当x_______时,分式无意义,当x______时,分式的值为1。

4、若分式的值为正数,则x的取值应是()

A.,B.C.D.为任意实数

四、提炼总结:

1、什么叫分式?

2、分式什么时候有意义?怎样求分式的值

初中数学教案反思模板篇10

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得

1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授:

问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得。

44x+64=328(1)

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结。

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业。

教科书第3页,习题6.1第1、3题。

初中数学教案反思模板篇11

教学设计示例一——公式

教学目标

1、了解公式的意义,使学生能用公式解决简单的实际问题;

2、初步培养学生观察、分析及概括的能力;

3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式、

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例二——公式

一、教学目标

(一)知识教学点

1、使学生能利用公式解决简单的实际问题、

2、使学生理解公式与代数式的关系、

(二)能力训练点

1、利用数学公式解决实际问题的能力、

2、利用已知的公式推导新公式的能力、

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践、

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美、

二、学法引导

1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2、学生学法:观察分析推导计算

三、重点、难点、疑点及解决办法

1、重点:利用旧公式推导出新的图形的计算公式、

2、难点:同重点、

3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式、

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏、在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题、

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析:

1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2、题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

【教法说明】

1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。

2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

学生讨论:

1、环形是怎样形成的、

2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意:

1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2、本题实际上是由圆的面积公式推导出环形面积公式。

3、进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1、计算底,高的三角形面积

2、已知长方形的长是宽的1。6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

3、已知圆的半径,,求圆的周长C和面积S

4、从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

(1)求A地到B地所用的时间公式。

(2)若千米/时,千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演、

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式、

八、随堂练习

(一)填空

1、圆的半径为R,它的面积________,周长_____________

2、平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

3、圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,V是多少?

九、布置作业

(一)必做题课本第__页x、x、x第__页x组x

(二)选做题课本第__页__组x

初中数学教案反思模板篇12

教学目的:

(一)知识点目标:

了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程:

引入新课:

  1. 活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

    内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1、自然数的产生、分数的产生。

2、章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)

-3、-2、-0.5、-等是负数

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

初中数学教案反思模板篇13

教学目标

知识与技能:

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

过程与方法:

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

情感态度价值观:

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

教学过程

1、创设情境

问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

2、探究勾股定理

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

初中数学教案反思模板篇14

教学目标

1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

难点利用数形结合的方法验证公式

教学方法动手操作,合作探究课型新授课教具投影仪

教师活动学生活动

情景设置:

你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

新课讲解:

把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

教师接着在介绍教材第94页例题的拼法及相关公式

提问:还能通过怎样拼图来解决以下问题

(1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

(2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

试用拼一个长方形的方法,把这个二次三项式因式分解。

这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

小结:

从这节课中你有哪些收获?

(教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

学生回答

a(b+c+d)=ab+ac+ad

(a+b)(c+d)=ac+ad+bc+bd

(a+b)2=a2+2ab+b2

学生拿出准备好的硬纸板制作

给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

作业第95页第3题

板书设计

复习例1板演

………………

………………

……例2……

………………

………………

教学后记

初中数学教案反思模板篇15

一、教学目标:

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1、写出一个图象经过点(1,—3)的函数解析式为:

2、直线y=—2X—2不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:

4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:

5、过点(0,2)且与直线y=3x平行的直线是:

6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:

7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

(2)求直线AC的解析式。

163934
包月会员
每天0次下载
20元/30天
直接下载
单次下载
1元/次
微信支付
欢迎使用微信支付
扫一扫支付
金额:
常见问题
  • 1、支付成功后,为何无法复制/下载
    付费后复制不了,请核对下微信账单信息,确保付费成功;已付费成功了还是复制不了
    VIP会员登陆即可:点击这里
  • 2、忘记账号和密码的解决办法
    忘记账号请:点击这里
    忘记密码请:点击这里
  • 3、如何联系客服
    如果以上无法解决您的问题请:站长QQ
    微信客服:357588611

请登录之后再下载!

下载中心

您的账号注册成功!密码为:123456,当前为默认信息,请及时修改

下载文件立即修改

帮助中心

如何获取自己的订单号?

打开微信,找到微信支付,找到自己的订单,就能看到自己的交易订单号了。

阅读并接受《用户协议》
注:各登录账户无关联!请仅用一种方式登录。


用户注册协议

一、 本网站运用开源的网站程序平台,通过国际互联网络等手段为会员或游客提供程序代码或者文章信息等服务。本网站有权在必要时修改服务条款,服务条款一旦发生变动,将会在重要页面上提示修改内容或通过其他形式告知会员。如果会员不同意所改动的内容,可以主动取消获得的网络服务。如果会员继续享用网络服务,则视为接受服务条款的变动。网站保留随时修改或中断服务而不需知照会员的权利。本站行使修改或中断服务的权利,不需对会员或第三方负责。

关闭