欢迎访问豆汁网文库范文大全网!客服QQ:357588611

有理数的加法教案

网友投稿 分享 时间: 加入收藏 我要投稿 点赞

有理数的加法教案通用5篇

我们将会培养和发展一系列的技能,包括思维能力、创造力、合作精神和解决问题的能力。下面是小编为大家整理的有理数的加法教案,如果大家喜欢可以分享给身边的朋友。

有理数的加法教案

有理数的加法教案 (精选篇1)

一、说教材:

(一)地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

(二)课程目标:

1、知识与技能目标:

⑴了解有理数加法的意义。

⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。

(3)运用有理数加法法则正确进行运算(主要是整数的运算)。

2、过程与方法目标:

⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

(2)在探索过程中感受数形结合和分类讨论的数学思想。

(3)渗透由特殊到一般的唯物辩证法思想

3、情感态度与价值观目标:

(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

(三)教学重点、难点:

重点:理解和运用有理数的加法法则

难点:理解有理数加法法则,尤其是理解异号两数相加的法则

二、说教法:

在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。

新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);

行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);

省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。

信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。

同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。

另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

三、说学法:

本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:

第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的`前提;

第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;

第三、范例讲解和随堂练习始终是学以致用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。

四、说教学程序:

本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)

1、 引入新知---新(创设新的问题情境)。

今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。

2、 探究新知---行

(1) 类比小学学习加法的“实物数数法”(1用一个 表示,-1用一个 表示,那么2就用两个 表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。

(2) 联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。

3、 得出新知---省

在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:

(-2)+(-3)=-5

(+3)+(-2)=+1

(+2)+(+3)=+5

(-3)+(+2)=-1

(-4)+(+4)=0

问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?

在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。

4、 运用新知---信

此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,

5、 联系实际、小小拓展;

为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?

6、 教学小结、知识回顾:

教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:

①确定类型、

②确定符号、

③确定绝对值。

7、课外作业

为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请聪明的你举例说明。

有理数的加法教案 (精选篇2)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

2.通过有理数的加法运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用有理数的加法法则进行加法运算.

难点:有理数的加法法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;3与-3;-3与0;

-2与+1;-+4与-3.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

(三)进行新课 有理数的加法(板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图 :略

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图 :略

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),同号两数相加

(-4)+(-5)=-( ),取相同的符号

4+5=9把绝对值相加

(-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的.绝对值,互为相反数的两个数相加得0

例如(-8)+5绝对值不相等的异号两数相加

85

(-8)+5=-( )取绝对值较大的加数符号

8-5=3 用较大的绝对值减去较小的绝对值

(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:

(1)确定和的符号;

(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)

解: 解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

有理数的加法教案 (精选篇3)

一、教学目标

(一)知识与技能

1、使学生掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,注意培养学生的运算能力。

(二)过程与方法

1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

(三)情感、态度与价值观

1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。

2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。

二、教学重点

会用有理数加法法则进行运算。

三、教学难点

异号两数相加的'法则。

四、教学方法

探究法、引导发现法

五、教具准备

多媒体课件、导学案

六、教学过程

(一)创设情景,引入新课。

小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。

(二)探究新知

1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。

(1)若两次都是向右走,很明显,一共向右走了5米。

记作:(+2)+(+3)= +5

(2)若两次都是向左走,很明显,一共向左走了5米。

记作:(-2)+(-3)= -5

(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。

记作:(+2)+(-3)= -1

(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。

记作:(-2)+ (+3)= +1

2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。

1)(-4)+ (-1)

2)(+5)+(-3)

3)(-4)+(+7)

4)(-6)+3

3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(-1800),1.2 +(-5.34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?

师生讨论、归纳出有理数的加法法则:

①同号两数相加,取相同的符号,并把绝对值相加;

②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;

除此之外,有理数相加,还有其他情况

(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。

记作:(-3)+(+3)= 0

(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。

记作:(+3)+(-3)= 0

(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。

记作:(-3)+0 = +3 或(+3)+0 = 0

归纳为:

③互为相反数的两个数相加得0;

④一个数同0相加,仍得这个数。

(三)运用新知

1、例题讲解:(利用多媒体展示)

例1: 计算下列各题:

(1)180 +(-10); (2)(-10)+(-1);

(3)5 +(-5); (4)0+(-2)。

教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。

解:(1)180+(-10)(异号型 )

=+(180-10)(取绝对值较大的数的符号,

=170 并用较大的绝对值减去较小的绝对值)

(2)(-10)+(-1) (同号型)

=-(10+1) (取相同的符号,并把绝对值相加)

=-1

对于(3)、(4) 小题,让学生解答。

在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:

①确定类型;

②确定符号;

③确定绝对值。

2、练习

(1)(口答)确定下列各题中的符号,并说明理由:

①(+3)+(+6);

② (-6) +(-7)

③ (+12)+(-7)

④ (+5)+(-10)

(2)计算下列各式:

①(-25)+(-7);

②(-13)+5;

③(-23)+ 0;

④ 45 +(-45)。

(3)土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?

(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。

(四)课时小结:

1、这节课你学到了什么?

2、对于这节课你有什么困惑?

(五)布置作业

课本练习1题、2题。

有理数的加法教案 (精选篇4)

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:

1、使学生掌握有理数加法法则,并能运用法则进行计算。

2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律。

3、 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算。

难点:异号两数相加的法则。

四、学情分析

1、学生非常熟悉正数加正数,正数加零的情况。

2、有理数的分类、数轴、绝对值的相关知识已经掌握。

3、学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1、将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2、由学生自己举出生活中的具体实例,认识到运算的。作用,加深对运算意义的理解;

3、在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1、回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4;-7和4;7和—4;-7和-4

【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2、创设情境引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0、

【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的`生活实例吗?

请同学们举自己熟悉的例子:

①西安夜间平均气温为16摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?

②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、 同号两数相加,取相同的符号,并把绝对值相加。

2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0、3、 一个数同0相加,仍得这个数。

老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑"。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力。

(三)运用新知深入体会

例1计算(-3)+(-9)。

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。

解:(-3)+(-9)=-12。

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值。

(四)布置作业

(1)P56习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1、通过"问题串"的设置,激发兴趣,引起学生深层次的思考;

2、通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。

3、通过法则的符号化,促进学生数学语言的形成,数学表示能力的提升。

4、在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法教案 (精选篇5)

今天我说课的课题是有理数的加法。本节课选自湖南教育出版社出版的数学七年级(上)第一章第四节第一课时的内容。下面我就从教材分析、教法学法、教学程序和教学反思四个方面向大家介绍我对本节课的理解与设计。

教材分析

(一)地位和作用

有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。

熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后面学习实数、代数式运算、方程、不等式、函数等知识奠定基础、有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键在于这一节的学习。

(二)教学目标

1、知识与能力目标:

(1)了解有理数加法的意义。

(2)理解并掌握的有理数加法的法则,并会运用法则进行准确运算,提高学生的运算能力。

2、过程与方法目标:

(1)经历法则探索的过程,培养学生归纳总结知识的能力。

(2)体验初步的算法思想。(转化)

(3)在探索过程中感受数形结合和分类讨论的数学思想。

(4)渗透由特殊到一般的唯物辩证法思想。

3、情感与态度目标:

(1)让学生体会到数学知识来源于生活,服务于生活,培养学生对数学的热爱。

(2)培养学生协作意识,体验成功,树立学习自信心。

(三)教学重点、难点:

重点:理解和运用有理数的加法法则。

难点:异号两数相加的法则。

教法与学法

我在本节课主要采用“引导——发现教学法”,并借助多媒体课件来展开教学。学生主要采用“合作探究学习法”来学习本节内容。

教学程序:

我采用的教学模式分为“引——探——结——用”四个环节。

(一)、引出课题(2分钟)

例如,足球比赛中,可以把进球数记为正数,失球数记为负数,它们的.和叫做净胜球数。

如果,红队进4个球,失2个球;蓝队进1个球,失1个球。则红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。

这里用到正数和负数的加法。

那么,怎样计算4+(-2)呢?

此环节大约2分钟。

(二)、探索规律、得出法则。(15分钟)

现规定正能量为正,负能量为负。

(1)若两个好人携带正能量分别为+20、+30,则相加的结果是()。

写成算式:(+20)+(+30)=()

(2)若两个坏人携带负能量分别为-20、-30,则相加的结果是()。

写成算式:(-20)+(-30)=()

这两个算式,运算有什么特点呢?

同号两数相加,好比作同伙人:正数+正数,正能量增大;负数+负数,负能量增大。

最后概括为定符号;把绝对值相加。

(3)若一个好人携带正能量+30一个坏人携带负能量-10。

则两人较量的结果是()赢,还剩()能量。

写成算式:(+30)+(-10)=()。

(4)若一个好人携带正能量+20一个坏人携带负能量-40。

则两人较量的结果是()赢,还剩()能量。

写成算式:(+20)+(-40)=()。

这组算式,运算有什么特点呢?

异号两数相加,好比两人在打仗,谁的力量强大,谁就赢。如果正能量大,符号就定为正;如果负能量大,符号就定为负,又让学生理解两人打仗,彼此力量会彼此抵消,彼此消损。那么赢的一方还剩多少能量呢?故而把绝对值做减法。强调用大的绝对值减去小的绝对值。

再看两种特殊情形:

(5)若一个好人携带正能量+30,一个坏人携带负能量-30。则两人较量的结果是(),还剩()能量。

写成算式:(-30)+(+30)=()。

(6)20+0=()0+(-15)=()

新课程倡导让学生从“要我学”向“我会学”转变,而教师是学生学习的组织者、引导者和合作者。由于教材上利用数轴和绝对值来探究法则过于抽象,不易引起学生的兴趣。借鉴之下,我选用了学生感兴趣的卡通动画人物,激发学生的学习兴趣,营造一种轻松愉快的学习氛围;我让学生来当裁判,学生必须把6次的情况都完成后,才能得到结果,这样每个学生的注意力一直会很集中。若学生有困难,则小组内探讨交流、补充,让学生能逐步引导概括出有理数的加法法则。上述过程,大约20分钟的时间,将突出重点,突破难点。

(三)小结(3分钟)

有理数的加法法则

1、同号两数相加:取加数的符号,并把绝对值相加。

2、异号两数相加:取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得0。

4、一个数同零相加:仍得这个数

(四)、运用

1、加深理解,巩固法则。(5分钟)

(1)填表

(2)思考:在进行有理数加法运算时,应分几步完成?

此题的设计是为了学生更好地理解、掌握有理数加法法则。同时,让学生知道,凡是有理数运算都要首先确定结果的符号。学生独立完成表格后,我将解题步骤,分步板书在黑板上,让学生对解题格式引起重视。

2、变式训练,应用法则。(15分钟)

数学家皮亚杰认为:“不断的训练才能够逐渐的发展出一个合理的数学模型”。练习和科学的重复练习始终是数学学习的有效办法。为了让学生熟练应用法则准确计算,我设计了2个例题、例1是同号两数相加;例2是异号两数相加。这两种最典型的类型,以起到巩固法则和规范格式的作用。我让学生尝试独立完成,让基础组的学生板演后,并让别的学生找错误,这样充分调动了学生的积极性,活跃了课堂气氛。同时,通过学生纠错的过程,让学生对错误加深记忆,将知识转化为技能。

3、小组闯关,检测目标。(5分钟)

在新课程下,教学的本质是学习活动,学生是否有效的学习,教学目标是否落实到位,检测目标成为一节课的一个重要环节。

我设计了两个闯关小游戏。一个是学生口答抢答,另一个是男生出题女生抢答,反之女生出题男生抢答,通过男女同学竞争中巩固、应用法则。

教学反思

1、情境探究问题的设置

我用卡通动画人物来引入问题情境,使学生能够形象的理解有理数加法法则。在思考问题时,首先应让学生对好人、坏人在一起有几种情况有一个明确的认识,培养学生考虑问题的完整性。然后再逐一的进行探索,通过学生谈论交流,最后得到有理数的四条加法法则。

2、例题安排的设置

我安排了同号两数相加和异号两数相加两种最典型的类型,以起到巩固法则和规范格式的作用。

3、数学语言表达的训练

为了培养学生的数学语言的表达能力,在课堂中我尽可能的让学生用自己的话来表达。这样可以及时纠正学生错误,引导学生规范的表达。

143634
领取福利

微信扫码领取福利

微信扫码分享